Existence of periodic solutions of autonomous functional differential equations
نویسندگان
چکیده
منابع مشابه
Existence of Positive Periodic Solutions for Neutral Functional Differential Equations
We find sufficient conditions for the existence of positive periodic solutions of two kinds of neutral differential equations. Using Krasnoselskii’s fixed-point theorem in cones, we obtain results that extend and improve previous results. These results are useful mostly when applied to neutral equations with delay in bio-mathematics.
متن کاملExistence and uniqueness of solutions for neutral periodic integro-differential equations with infinite delay
...
متن کاملON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS
Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...
متن کاملPositive periodic solutions of functional differential equations
We consider the existence, multiplicity and nonexistence of positive o-periodic solutions for the periodic equation x0ðtÞ 1⁄4 aðtÞgðxÞxðtÞ lbðtÞf ðxðt tðtÞÞÞ; where a; bACðR; 1⁄20;NÞÞ are o-periodic, Ro 0 aðtÞ dt40; Ro 0 bðtÞ dt40; f ; gACð1⁄20;NÞ; 1⁄20;NÞÞ; and f ðuÞ40 for u40; gðxÞ is bounded, tðtÞ is a continuous o-periodic function. Define f0 1⁄4 limu-0þ f ðuÞ u ; fN 1⁄4 limu-N f ðuÞ u ; i0...
متن کاملExistence of Subharmonic Periodic Solutions to a Class of Second-Order Non-Autonomous Neutral Functional Differential Equations
and Applied Analysis 3 Let us consider the functional I x defined on H1 0 0, 2γτ by I x ∫2γτ 0 [ x′ t x′ t − τ − F t, x t , x t − τ dt. 2.4 For all x, y ∈ H1 0 0, 2γτ and ε > 0, we know that I ( x εy ) I x ε (∫2γτ 0 [ x′ t y′ t − τ x′ t − τ y′ t −Ft, x t εy t , x t − τ εy t − τ ) − F t, x t , x t − τ dt ) ε2 ∫2γτ 0 y′ t y′ t − τ dt. 2.5 It is then easy to see that 〈 I ′ x , y 〉 ∫2γτ 0 [ x′ t y′...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1974
ISSN: 0022-0396
DOI: 10.1016/0022-0396(74)90084-9